Distinct Functional Programs in Fetal T and Myeloid Lineages

نویسندگان

  • Elisabeth R. Krow-Lucal
  • Joseph M. McCune
چکیده

INTRODUCTION Pregnancy poses a challenge to normal mechanisms of immune recognition and rejection: both the mother and her fetus are exposed to allogeneic cells from one to the other. In the case of the mother, these cells are fetal cells carrying paternal antigens; in the case of the fetus, they are maternal cells expressing non-inherited maternal alloantigens (1, 2). Since adaptive immune recognition of these alloantigens could result in mutual rejection and an end to the pregnancy, there are extensive mechanisms in place to inhibit such responses, including poor antigen presentation (3), non-canonical MHC expression, and unique placental and decidual immunomodulatory cell populations (4). The reader is referred to several excellent reviews on this subject (4–7). Given the inherent difficulties attending experiments in humans, studies of the fetal–maternal interface have focused primarily on inbred strains of laboratory mice. There are, however, major differences between the biology of immune system development of such mice and that found in humans, making it challenging to relate findings in one species to the other. In mice, by example, mature αβ T cells colonize peripheral lymphoid organs during very late gestation and do not fully populate the periphery until after birth (8). By contrast, mature αβ T cells can be found in the periphery of the human fetus as early as 10–12 gestational weeks (5, 9). Thus, early hypotheses posited that in utero tolerance was maintained by a passive or inert fetal immune system (similar to that found in the mouse) (Figure 1A). However, current research suggests that there exist distinct fetal programs both in the T and myeloid compartments that contribute to the unique environment in utero, both in mice and in humans (Figures 1B,C).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The common myelolymphoid progenitor: a key intermediate stage in hemopoiesis generating T and B cells.

We have previously shown that the common progenitors for myeloid, T, and B cell lineages are enriched in the earliest population of murine fetal liver. However, it remained unclear whether such multipotent progenitors represent the pluripotent progenitors capable of generating all hemopoietic cells or they also comprise progenitors restricted to myeloid, T, and B cell lineages. To address this ...

متن کامل

Fetal liver myelopoiesis occurs through distinct, prospectively isolatable progenitor subsets.

Hematopoietic fate maps in the developing mouse embryo remain imprecise. Definitive, adult-type hematopoiesis first appears in the fetal liver, then progresses to the spleen and bone marrow. Clonogenic common lymphoid progenitors and clonogenic common myeloid progenitors (CMPs) in adult mouse bone marrow that give rise to all lymphoid and myeloid lineages, respectively, have recently been ident...

متن کامل

Range Determination of Antigen Expression in Myeloid, Erythroid and Lymphoid Cell Lineages among Patients with Myelodysplastic Syndrome

Background: Myelodysplastic syndrome is a mixed clonal disorder of bone marrow progenitor cells. Understanding the pattern of the different lineage-specific, immature, and mature markers in myelodysplastic syndrome will help in setting-up the frame of reference to diagnose. Patients and Methods: We compared 60 bone marrow samples from 30 newly-diagnosed patients with myelodysplastic syndrome ...

متن کامل

Lymphoid and myeloid differentiation of fetal liver CD34+lineage- cells in human thymic organ culture

In this article, we report that the human fetal thymus contains CD34bright cells (< 0.01% of total thymocytes) with a phenotype that resembles that of multipotent hematopoietic progenitors in the fetal bone marrow. CD34bright thymocytes were CD33-/dull and were negative for CD38, CD2, and CD5 as well as for the lineage markers CD3, CD4, and CD8 (T cells), CD19 and CD20 (B cells), CD56 (NK cells...

متن کامل

Emergence of T, B, and myeloid lineage-committed as well as multipotent hemopoietic progenitors in the aorta-gonad-mesonephros region of day 10 fetuses of the mouse.

We investigated the developmental potential of hemopoietic progenitors in the aorta-gonad-mesonephros (AGM) region, where the definitive type hemopoietic progenitors have been shown to emerge before the fetal liver develops. By using an assay system that is able to determine the developmental potential of individual progenitors toward the T, B, and myeloid lineages, we show that not only multip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014